Fixed Segments tree in notebook
[andmenj-acm.git] / 11448 - Who said crisis / bigint-2007.07.07 / sample.cc
blobf52a7e1b60060cda1c6f8d0f4e7465ab06ed03f0
1 /*
2 * Matt McCutchen's Big Integer Library
4 * Sample program demonstrating the most important features of the Big
5 * Integer Library
6 */
8 // Standard libraries
9 #include <string>
10 #include <iostream>
12 // For the BigInteger class itself.
13 #include "BigInteger.hh"
15 // For the 4 routines `easy BI/BU <=> string' and `iostream' integration.
16 #include "BigIntegerUtils.hh"
18 int main() {
19 try {
20 BigInteger a; // a is 0
21 int b = 535;
23 a = b; // From int to BigInteger...
24 b = a; // ...and back, no casts required!
26 * If a were too big for an int you'd get a runtime exception.
27 * The Big Integer Library throws C-strings (that is,
28 * `const char *'s) when something goes wrong. It's a good idea
29 * to catch them; the `try/catch' construct wrapping all this
30 * code is an example of how to do this. Some C++ compilers need
31 * a special command-line option to compile code that uses
32 * exceptions.
35 BigInteger c(a); // Copy a BigInteger.
37 // d is -314159265. The `int' literal is converted to a
38 // BigInteger.
39 BigInteger d(-314159265);
41 // This won't compile because the number is too big to be an
42 // integer literal.
43 //BigInteger e(3141592653589793238462643383279);
45 // Instead you can convert the number from a string.
46 std::string s("3141592653589793238462643383279");
47 BigInteger f = easyStringToBI(s);
49 // You can convert the other way too.
50 std::string s2 = easyBItoString(f);
52 // f is stringified and send to std::cout.
53 std::cout << f << std::endl;
56 * Let's do some math!
58 * The Big Integer Library provides lots of overloaded operators
59 * and corresponding assignment operators. So you can do `a + b'
60 * with BigIntegers just as with normal integers. The named
61 * methods `add', `divideWithRemainder', etc. are more advanced
62 * ``put-here operations''; see `BigUnsigned.hh' for details.
64 BigInteger g(314159), h(265);
65 // All five ``return-by-value'' arithmetic operators.
66 std::cout << (g + h) << '\n' << (g - h) << '\n' << (g * h)
67 << '\n' << (g / h) << '\n' << (g % h) << std::endl;
69 BigUnsigned i(0xFF0000FF), j(0x0000FFFF);
70 // All five ``return-by-value'' bitwise operators.
71 std::cout.flags(std::ios::hex | std::ios::showbase);
72 std::cout << (i & j) << '\n' << (i | j) << '\n' << (i ^ j) << '\n'
73 << (j << 21) << '\n' << (j >> 10) << '\n';
74 std::cout.flags(std::ios::dec);
76 // Let's do some heavy lifting and calculate powers of 314.
77 int maxPower = 10;
78 BigUnsigned x(1), big314(314);
79 for (int power = 0; power <= maxPower; power++) {
80 std::cout << "314^" << power << " = " << x << std::endl;
81 x *= big314; // A BigInteger assignment operator
85 * If you want to experiment with the library,
86 * you can add your own test code here.
88 // std::cout << "Beginning of custom test code:" << std::endl;
90 } catch(char const* err) {
91 std::cout << "The library threw an exception:\n"
92 << err << std::endl;
95 return 0;
99 Running the sample program produces this output:
101 3141592653589793238462643383279
102 314424
103 313894
104 83252135
105 1185
107 0xFF
108 0xFF00FFFF
109 0xFF00FF00
110 0x1FFFE00000
111 0x3F
112 314^0 = 1
113 314^1 = 314
114 314^2 = 98596
115 314^3 = 30959144
116 314^4 = 9721171216
117 314^5 = 3052447761824
118 314^6 = 958468597212736
119 314^7 = 300959139524799104
120 314^8 = 94501169810786918656
121 314^9 = 29673367320587092457984
122 314^10 = 9317437338664347031806976